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This paper contains the formulation and an effective solution of the 

dynamic plane strain problem of wedging of brittle bodies by an infinite 

rigid wedge of arbitrary shape moving with constant velocity. The study 

is conducted on the basis of the general concepts on brittle cracking 

developed in papers [ 1 1 where, in particular, a problem of wedging in 

static formulation was investigated. Special cases are considered, namely 

a wedge of constant thickness and rounded wedges of various shape. 

The limiting values of the wedge velocity are found, up to which the 

present formulation of the problem is valid. The special role played by 

Rayleigh waves in wedging problems, in problems of uniform motion of a 

rigid stamp on the surface of a semispace [2,3,4 I and other analogous 

problems is investigatedjit turns out that as the Rayleigh velocity is 

reached peculiar resonance phenomena are produced in the elastic body. It 

is shown that the velocity of formation of a free crack can never exceed 

the Rayleigh surface-wave velocity in the given material. The problem in- 

vestigated is of particular interest in the theory of cutting, since 

cutting at high speeds is invariably accompanied by wedging in most cases 

follows the brittle or quasi-brittle mechanism. 

1. Introduction and formulation of the problem. We consider 

a hanogeneous and isotropic brittle body, subjected to wedging by an 

aspnetric, absolutely rigid wedge (Fig. 0, which is of thickness 2h at 

infinity and which moves along its line of symmetry with constant velo- 

city V. Velocity V is assumed to be smaller than the shear-wave velocity 

c2 in the wedged body." A crack is formed in front of the wedge, which 

* As the investigation below shows, the given formulation of the problem 

is possible only if the wedge velocity is smaller than the velocity 

of Rayleigh surface waves, which in turn is smaller than the velocity 

in the given material. 
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Fig. 1. 

closes smoothly at a certain point 0; the location of the point 0 with 

respect to the front point of the wedge C is not known in advance and 

must. be determined in the process of solving the problem. 

If the wedge has a rounded front part (Fig. la), then the location of 
beginning of contact between the crack surface and the wedge B and B’ is 

also not known in advance and is determined in the process of solving 

the problem. 

If the wedge possesses a truncated front part (Fig. lb), as for 
exaaple in the case of a wedge of constant thickness, then the location 

of the closing points is completely determined: they coincide with the 

comers of the front part of the wedge. However, in this case the 

stresses at the closing points are infinite. lbe friction forces, acting 

on the faces A B and A’B’ of the wedge which touch the wedged body, are 

assuned to follow Coulanb’s law, with a coefficient of friction k. 

The mathematical formulation of the problem is reduced to the follow- 

ing: the equations of dynamic plane elasticity 

(1.1) 

(1.2) 

are to be solved. Here u, u are the displacement components along the 

fixed axes x and y; t is the time; X, p are Lame’s coefficients; p is the 

density of the wedged materi al, 8 = &z/ax + &/b’y. Definite boundary 

conditions are assuned on the surface of the crack. D.re to the thinness 

of the crack the boundary conditions may be referred to the cut A BOB ‘A’; 

for the general nonstationary wedging problem these conditions, without 

taking account of molecular cohesion forces, are of the form 
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v = F (x, t), ccy - kq, = 0 on AB 

z - 0, 33 - oy =o on BOmdOB’ (1.3) 

v = -F (z, t), zxy - ko, = 0 on B’A’ 

where F(n, t) is a function determining the equation of the moving sur- 

face of the crack in a fixed coordinate system related to the wedged 

body; ox, oY, rzy are the components of the stress tensor. For the prob- 

lem considered it is natural to pass to a moving coordinate system &, 

related to the moving wedge 

g = x + Vt, rl =Y (1.4) 

and the origin of the system of coordinates 67 is conveniently taken 

(Fig. 1) at the end of the crack 0. Let us denote by I, the distance 

from the front end of the wedge C to the end of the crack 0, and by 1, 

the distance from the meeting points B and B'.to the end of the crack. 
The boundary conditions may then be written in the form 

q, = 0, on = 0 (0\<54L q=O) (1.5) 

v = f f (E - W, q,, - ko, = 0 (la < 5 < 00, q = 0) 

where f(t) is a function which determines the equation of the surface of 

the wedge in the moving coordinate system with the origin at the front 

point of the wedge C, i.e. the function which determines the shape of 

the wedge; the plus and minus signs correspond to the upper and lower 

surface of the crack, respectively. The location of the meeting points 

B and B'.is determined in the case of a wedge with a rounded front part 
from the condition of finiteness of the stress u,, at these points, by 

analogy to thewell-known Muskhelishvili condition in the problem on stamp 

indentation. 'Ihe location of the end of the crack 0 with respect to the 

front point of the wedge C is determined from the Khristianovich condi- 

tion on finiteness of stresses and smooth closing of opposite sides of 

the crack at the point 0. Just as in static problems [l I, it becomes 

necessary that the fracture stress o,,, calculated without taking molecular 

cohesion forces into account which are acting in the vicinity of 0, (i.e. 

on the basis of the boundary-value problem (1.11, (1.21, (1.511, 

approaches infinity in accordance with the law K/v\/s, where s is the 

distance to this point and K is the cohesion modulus of the wedged 
material. 

As is seen, the problem investigated represents a peculiar combination 
of the problem of the indentation of a uniformly moving stamp and of the 
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crack problem. We note that the problem of stamps, moving on the bound- 

ary of a semispace, was considered in papers by Galin [2,3 1 and Radok 
[4 1. Ioffe [5 1 and Radok [4 1 considered also the physically unreal- 
istic problem of a uniformly moving crack of finite length, with constant 

stresses at infinity. The 1 ength of the crack was assumed to be given; 

the question of determining this length was not touched upon by these 

authors. 

To us it seems that the problem considered is basic for the theory of 

cutting. In all d 1 mo e s of the process of cutting known to the authors it 

is assumed that the cutter is in complete contact with the body cut. Such 

a model is valid, however, only for low cutting speeds; as the cutting 

speed is increased the fracture mechanism becomes brittle or quasi- 

brittle* and the cutting process is necessarily accompanied by wedging 

of the material. The model assumed here is confirmed by the fact observed 

in practice, namely that the cutters are worn mostly along the sides**. 

2. Solution of the general problem. In view of the obvious 

symmetry of the problem with respect to the [-axis it is sufficient to 

consider only the lower half-plane, taking the conditions on its boundary 

in the form 

V=O, zy,=o (---CE<O) 

at,, - ka, = 0 

We recall briefly the basic relation of the method of Galin 13 1 which 
will be used in the sequel. We note that in Section 9of [3 1 which is of 
interest to us, inaccuracies are contained which have influenced the 

final formulas; these inaccuracies are rectified in the present paper. 

The stresses and displacements are expressed in the following form: 

u = - 2~ Imcp (21) - 2B ImQ (zz), 

at = - 2L Imcp’ (zl)- 2F Im$’ (z2), 

v = 2C Re cp (~1) + 20 Re 4 (Q) 

on = - 2G Imcp’ (~1) - 2H Im$’ (Q) (2.2) 

%I = 2M Re $ (~1) + 2N Re $’ (z2) 

t Plastic deformations occur in quasi-brittle fracture, but they are 

limited to a thin layer near the crack surface. 

** S.A. Khristianovich repeatedly called attention to the necessity of 
taking wedging into account in problems of cutting. 
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where 

1-zv 

997 

(2.3) 

(E is Young’s modulus, v is Poisson’s ratio of the wedged material) and 
c1 and c2 are the velocities of the dilatational and equivoluminal waves, 
respectively. The functions #(zl) and $4~~) represent analytic functions 
of complex variables 

21 = E + ihg, 2% = E + %rl 

related to other analytic functions w1 and wo2 by linear relations 

N iH 
9’ @l) = 2s (GN __ MH) wl (‘1) - 2% (GN _ &f$fj-#s (‘1) 

9’ (a) = - 
M iG 

Xx (GN - MH) w1 ha) + 2n (GN _ MH) w2 b) 

(2.4) 

(2.5) 

and the functions w,(z) and la*(t) in turn are determined by the formulas 

co 03 

Wl (2) = Ul - iv1 = 
s 

wa (2) = uz - iv3 = (%I )o=o 5 - z -!%- (2.6) 
--03 

Further, the relation is valid 

CN-l)M 1 cu 
GN-MH %- s (2.7) 

-cQ 

On the boundary of the half-plane, at z = 6 we have obviously 

m 

u.1= 
s @&I=0 & ' Q=R@&g (2.8) 

--co 

Using relations (2.7) and (2.8), we reduce the boundary-value problem 
(2.1) to the following filbert problem for the function 
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Ul =o (- CcJ < E < o>, Ul = 0 (0 < g < la) 

-puff’ (E - II) = UI + kqvl (I2 d E < =) 

(2.9) 

where the notation is introduced 

(2.10) 
GN-MH 

p= CN-DM 

_(1_!$~}[1_2g&mS]-1’~ 

CH-DG 
Q = CN-DM = -${(I - Tj-JGq/-I_ Z&S+z}[l _&?+P]-‘” 

‘lhe general methods of solving Hilbert’s problem are considered in 
detail in the monographs by Muskhelishvili 16 1, Galin [3 1 and Gakhov 
[7 1; we will therefore not dwell on the solution of problem (2.9) but 
present the ready answer. We note that the solution sought must satisfy 
the physically natural integration condition at the points of discon- 
tinuity of the coefficients in Hilbert’s problem, as well as the condi- 
tion of approaching zero at infinity. These conditions determine the 
unique solution of Hilbert’s problem which is of the form 

w(z) = 
co - @ (4 

z’/’ (l* - ,)1-e ’ 
(I, (2) = p sin x0 

O3 f’ (t - II) (t - zp t’h7t s t-z - (2.11) 
1, 

where c,, is a real positive constant, and 

(2.12) 

(the value of tan-’ is taken smaller than a/2). In particular, in the 
absence of friction at the sides of the wedge, i.e. for k = 0, Hilbert’s 
boundary-value problem degenerates into a mixed problem, 8 = l/2 and the 
solution (2.11) takes on the form 

(2.13) 
1. 

From solution (2.11) and the second relation (2.8), we obtain the 
general expression for the normal stress at the boundary 

I 
co - 0 (5) 

Jc (- ~)“(Z2 - E)l+ 
(--coE50) 

(%bl=o = 0 (0 < E < 12) 
(2.14) 

sin n0 [co - 0 (Q] 
I- II (5 - z,)i-eg”a 

- $ p sin 2nOf’ (; - 11) (Z2 6 5 < 0~) 
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where 

CD (5) = p sin no 
O3 f’ (t - II) (t - Z,)l-e tYrd t 

s t--S 
1% 

(2.15) 

(the singular integral is taken in the sense of its principal value). In 

particular, in the absence of friction, Expressions (2.14) and (2.15) 

take on the form 

I 
co - @ 69 

3-c V(b- 5) (-- 5) 
(-=<EBO) 

(%&3 = 0 (0 < E < 12) (2.16) 

m j' (t - Z1) v/t (t - Z2) dt 
@(Q = P\ t--S 

1, 

(2.17) 

Further, integrating (2.7), we obtain an expression for the displace- 

ment u of the boundary of the half-plane 5 = s: 

v (s) + c = i- 1 (o&o In 1 s 1 dg + 4 5 (z&J,=l$3 (2.18) 

- % 

where c, so are constants of integration. We note that negative s cor- 

respond to the part of the body, not as yet cut, and the displacement v 

for such s is equal to zero. lherefore, on the strength of (2.18), for 
s > 0 the relation is valid 

Cd- 
P* 

T (Q,),=o In /g 1 dt; + + -i t%lh=“dE (2.19) 

--co % 

Subtracting (2.19) from (2.18) and using the boundary conditions, we 

obtain the final expression for the displacement v in the form 

In the absence of friction, the expression for the displacement v 

takes on the form 

v = f 7 (c,),=, In / ps I& (2.21) 
--co 

3. Determination of constants entering the solution. 
General dynamic condition at the end of the crack. 1. The 
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solution obtained contains three undetermined real constants c,,, I, and 
I,. For their determination we use three conditions not employed as yet: 

1 - ‘lhe thickness of the wedge is equal to 2h at infinity. 

2 - ‘lhe stress at the meeting point of the crack surface and the wedge 
is finite for a wedge with a rounded front part. 

3 - ‘lhe stress at the end of the crack is finite, or, which is the 
same, the opposite sides of the crack close smoothly at its end. 

We require that the derivative f’(c) approaches zero at infinity 
faster than 5 -3’2+e. Then th e integral (2.15) is known to exist and 
approaches zero as 6 + 0~. In the analysis of the first condition we con- 
sider separately the cases of absence of friction (k = 0) and presence of 
friction (k f 0). In the absence of friction, the expression for normal 
stresses at the boundary is of the form (2.161, and the displacement u 
is represented by Formula (2.21). By virtue of the first condition we 

have 

As was done in 18 I, it can be shown that 

(a) If the function (on)n = 0 is finite, i.e. becomes zero for all 
those (’ for which I[ ( is larger than a certain A, then I = 0. 

(b) If the function (o,,)n= ,-, approaches zero as ((1 + 00 faster than 
l/j 5 1, then I = 0. 

It follows that in calculating I, only those terms of the expansion 

(on)n = 0 at infinity are essential which approach zero at infinity not 

faster than l/r. By virtue of the condition imposed on the function 

f'(C), @K) -+ 0 as 161 + 00, and we obtain from (2.16) an asymptotic 

formula for (ol)n = a as I c 1 + 00 

(Q,),=o = - 2 + 0 ($, (3.2) 

Substituting (3.2) into (3.1) and evaluating the integral [9 1 b we 
find 

From this we obtain 
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the boundary is of 

by Formula (2.20). 
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co =ph (3.3) 

of friction, the expression for normal stresses at 

the form (2.14), and the displacement v is expressed 

By virtue of the first condition we have 

where 1, as before, is determined 

From (2.14) it follows that as 

12 

by Formula (3.1). 

151+m 

and, since in the presence of friction 8 is always smaller than l/2, 

then (on)n = 0 decreases at infinity faster than l/c. From this and from 

what was said above in considering the case k = 0, it follows that I = 0 

(u&o = 0 (I 5 p+e) 

(3.4) 

(3.5) 

such that Formula (3.4) is written down in the form 

h = .-~~(u&~ dE (3.6) 

lz 

Substituting into (3.6) the expression for (Q from Formulas 

(2.14) and (2.15), and recalling that gk = cot IT B 
),=, 

, we find 

co 
co cos n0 

ph = n s dE 
l ,  5”’ (5 -we +p co9 ad [h - f (I, - Z,)] - 

co 
p sin 23x0 

----G- s 
dE co f’ (t - Ll)(t - lp-8tl’zdt 

s *, E'/'(E-We 1* t--S 
(3.7) 

It can be shown, using tables L9.10 1 that 

co 
r (‘/a - 0) r (0) 

r (l/2) lye 
a3 

5 dE ~f’(t-zl)(t-za)w’w 

\ ;* E1”(E-h)‘--e ;, t--S 

1 y = - 
lvt-e 

f’ (t - Q(t - ( > 
2 

I I,)- t’ks ; ) 0 dt 
12 

where S(r, 0) is the principal value of the integral 
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S(z,cl)= y da 
1 6’36 - I)+0 (+- Q) 

From this and from (3.7) we obtain the first relation for the deter- 

mination of the parameters co, I, and 1, 

nph r (l/&y (3.8) 
co = r(e) l-(1/,-- qcosne - 

nP cm [h - (12 - Ql r P/z) 
r (lh - 0) r (0) 

+ 

+ 
p sin ~03 r (l/z) p (t - II) (t - z,p-e t’h s (; , e) dt 

r (l/z - 0) r (0) lyg-’ iz 

'Ihe second relation is obtained from the condition of finiteness of 

normal stresses at the meeting point 6 = I, of the crack surface and the 

wedge. For this, as Formula (2.14) shows, it is necessary and sufficient 

that the equation 

co--aqZ2) =o 

be satisfied. Thus, on the strength of (2.15), the 

I second relation takes on the form 

ff co -psin3cfl 
03f' (t - Zr) t”*dt = o 

s t* 0 - hY 
(3.9) 

In particular, in the absence of friction (K = 0) 
Fig. 2. it is of the form 

h = i f’(t - 4) /&dt 

(2) 'lhe third relation between the parameters ca, 1, and I, is obtained 

from the condition of finiteness of stresses and smooth closing at the 

end of the crack 0. It was shown for static problems 11 1 that to satisfy 
this condition, it is necessary and sufficient that the fracture stresses, 

(3.10) 

calculated without taking the forces of molecular cohesion into account, 

be infinite at the end of the crack in accordance with the law K/n\l s 

where s is the distance from the end of the crack and K is the cohesion 
modulus of the material. It turns out that this last condition is valid 

also for dynamic problems. 

To supply a proof, we consider the vicinity at the end of the propagat- 

ing crack which is small as compared to the dimensions of the crack as a 

whole, but which is large as compared to the dimension of its end region 

in which the cohesion forces are acting. Because of the smallness of the 
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dimension d as compared to the dimensions of the crack as a whole (the 
first hypothesis tl f t), such a region may always be found. Further, for 
a small interval of time it may always be assumed that the end of the 
crack is propagating with constant velocity. 'lhus, to determine the in- 
fluence of the forces of molecular cohesion on stresses and deformations 
it is sufficient to consider a semi-infinite cut moving with constant 

velocity V (Fig. 2) under the action of cohesion forces alone. The prob- 
lem is synznetric with respect to the J-axis; considering again the lower- 
half-plane, we obtain the boundary conditions on the e-axis in the form* 

v(a) ZZZ 0, T&(a) = 0 (--d<<Oo) 
a,@) = G(5), +r&@) = 0 (0 <E dd) 

C&j=) = z#) = 0 (E > d) (3.11) 

where G(E) is the distribution of the cohesion forces which are equal to 
zero outside the end region. 

'lhe determination of the corresponding stresses and deformations, in 
complete analogy to Section 2, is reduced to the solution of the mixed 
problems for the analytic function ~~"'(2) = nlCaf - ids 

(3.12) 

z&)=0(-co<E<O), z@=nG(E) (O<Ff,<d), v&") =o (E>d) 

In accordance with the formula of Keldysh-SedovCll 1, the function 
ml 'a'(~) is represented in the form 

such that, in accordance with (2.8), the stress (u,,'~)),,= 0 at the point 
5‘=- s (s > 0) is expressed by the formula 

d 
1 

(b,qFo = - - s G (t)tl’” dt 

nco t-i-s 

For small s, due to autonomy of the end region (i.e. the independence 
of its form and the cohesion forces acting in it of loading; the second 
hypothesis Cl 11, and by definition of the cohesion modulus I:1 I, we have 

d 
&p) = K. 

----- -=-w 

ar/s 
(3.14) 

l The superscript (a) designates the components of stress, displacement, 
etc., produced by the cohesion forces. 
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To ensure the finiteness of the fracture stress at the end of the 

crack, the fracture stress o 

cohesion into account, shoul a 
, without takiTg)the of 

compensate stress u , i.e. should 

approach infinity in accordance with the law 
77 

'Ihe study shows that the fulfilment of condition (3.15) simultaneously 

ensures the finiteness of the stress u5 and the smoothness of closing of 

opposite sides at the end of the crack. In order that the solution of 

the problem considered satisfies condition (3.15) it is necessary, as 

Formula (2.14) indicates, to satisfy the relation 

co - Q, (0) = Kg-” 

or, in view of (2.151, the relation 

co - p sin nfJ c0 f’ (t - b)(t --h)‘-edt = Kl 
s 

1-e 
t% 2 

1. 
(3.16) 

which is indeed the third relation connecting the parameters co, I, and 

I,. In the absence of friction, condition (3.16) takes on the form 

Subtracting (3.9) from (3.161, we obtain the equation 

co f’ (t - 11) dt s K 

tm 
t% (t - z# = lzep sin i-&l 

(3.17) 

(3.18) 

In particular, in the absence of friction, this equation takes on the 

form 

O3 f' (t - 11) dt _ 5 K 
Ir If= PVZ 

(3.19) 

Conditions (3.3), (3.11, and (3.17) in the absence of friction and 

conditions (3.81, (3.9) and (3.16) in the presence of friction for a 

given shape of the wedge, i.e. for a given function f(t), represent 

finite relations which determine uniquely the values of the parameters 

CO' 
I, and 1,. We note that in the absence of friction one of the condi- 

tions (3.10) and (3.17) may be replaced by Equation (3.19) and in the 

presence of friction one of the conditions (3.9) and (3.16) may be re- 
placed by Equation (3.18). 
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4. Resistance to wedging. is 

R, which the resultant the 

forces friction applied the side the wedge, of frontal 

sistance R, is the of the of normal 

on the axis. 'lhe resistance R, be represented the 

form 

RI = - 2 i (zd,=& (4.1) 
12 

Formula (3.6) may be written in the following manner: 

(4.2) 

Comparing (4.2) and (4.1) we obtain a very simple formula for the 

friction resistance: 

Rl = y = 2hp, (5) 

= 2hp, 
2(1-v) [(1-+?7z~)2-~1-_11181-~~ mf] 

( 
1-~$~)-~l-~21/l-_~~nL2 

(4.3) 

( E 
PO = 2 (1 - Y2) = (PLO) 

'Ihe dependence of R,* = R1/2hpo on m for different v is represented 

in Fig. 3; as is seen, the resistance to friction decreases with an 

Fig. 3. 
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increase in the velocity of motion of the wedge tending to zero as the 

critical velocity is approached which corresponds to vanishing of p (or 
coinciding with the velocity of propagation of Rayleigh surface waves, 

see below). It is remarkable that the expression for the force of fric- 

tion obtained does not depend on the magnitude of the coefficient of 

friction or the shape of the wedge but is completely determined by the 

thickness of the wedge at infinity, the velocity of wedging and the 

elastic characteristics of the wedged material. 

Since the projection of the normal stress on the wedge axis is equal 

to - (oJ 
1 
=a~'(0 in view of the thinness of the wedge, the frontal re- 

sistance 2 is determined by the relation 

K2 = - 2 y(G,),_01'(E)dE (4.4) 

5. Solution of specific problems. Let us consider several 

particular problems which have an interest of their own. 

(Fig. 4). In this case f'(t) I 0 

the function w,(z) is written in 

form 

(1) Wedge of constant thickness 

and 

the 
P 

WI(Z) == co 
z”2 (12 - p 

(5.1) 

where the real positive constant 

is determined by the relation 

Fig. 4. 
CO 

nph12”2-el- (‘i2) 
co = iye, r (l/2 - 0) cos n0 ’ 

0 = f tan-l $ (5.2) 

To determine the constants 1, = 1, we use relation (3.16) which in 

our case takes on the form 

co = K/2-e (5.3) 

Using relation (5.21, we obtain an expression for I, = 1, in the form 

11 = 12 = 
n2p2hT2 (l/2) 

r2 (0) r2 (I#‘2 - 0) co?? n0K” (5.4) 

The distribution of normal stresses on the sides of the wedge and on 

the crack extension is of the form 
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I 
co 

n(-g” (I, -E)- 

(Q,),=o = 0 

co 
- np (5 - lp 

In the absence of friction, the function 
the form 

w1* (4 = vz @::*_ z) 7 

(--m<E600) 

(0 < 5 < 12) (5.5) 

(12 -\< 5 < c-1 

w,(z) = WI*(z) is written in 

co* = ph (5.6) 

and the free length of the crack in the absence of friction I,* is ex- 
pressed by the formula 

It is convenient to represent the last expression in the form 

12* Pa 
r=-Yit 

120 PO 
PO = (P)m=o = E 2 (1 - 9) 

where E2,,* is the free length of the crack in the case of a wedge of con- 
stant thickness at rest, which, as shown in [l I, is determined by the 
relation 

lzO* = 
EZh2 

4 (1 - vz)z KZ 

A graph of the function 12*/120* in dependence on na = V/c2 for a value 
of Poisson’s ratio u = 0.25 is given in Fig. 5. We see that as the 
critical velocity is reached which corresponds to a vanishing of p, the 
length of the free part of the crack also vanishes. At a speed which 
exceeds the critical one, our formulation of the problem, as will be 
shown below, becomes invalid. 

Relationship (5.4) may be represented in view of (5.7) in the form 

12 1719 

T = la l? (0) r2 (l/z - 0) coti2 no (5.9) 

A graph of the dependence of 1,/l,* on the parameter 8 which character- 
izes friction is given in Fig. 6. 

(2) Wedge with a rounded front part. To estimate the influence of a 
rounding of the front part of the wedge, we consider a wedge whose shape 
is given by the relation 
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Fig. 5. 

h (5 - h > B) 
f(~-4) = 

I 
(5.10) 

(O<E--l<B) 

where B is the length of the part of the wedge which is rounded off. 
Friction is neglected. It is obvious that with B= 0 we obtain a wedge of 
constant thickness. Without writing the function ml(z) explicitly, we 

present only the equations which determine the unknown parameters 1, and 

I,. Using relations (3.10) and (3.17), we find 

(5.11) 

2B2 
plz= 

- z2 [l-jq32- --x~4~"(p"-l) + 11 + 2(B + k - Z2) (1 +7/p-l) 

(B+zl)z2(1-vp2-1)- 

-$ (1 - JqPx~4p"(p2- 1) + I)] 

where 

To estimate the influence of the rounding off, it is sufficient to 

consider the case of small B. In this case the second equation (5.11) 

yields 

Z,=Z,+B-$Bi/T (5.12) 

Substituting (5.12) into the first equation (5.11) and discarding 
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terms of order of magnitude larger than the first, we find 

(5.13) 

where Z,* = l,* is the length of the free part of the crack for a wedge 

of constant thickness. We see that a small rounding of the edges of the 

wedge is of small influence on the length of the free part of the crack. 

(3) Wedge rounded off in accordance with a power law. Consider a wedge 

whose equation is given in the form 

f (5 - 4) = h [ 1 - (A _;‘; E)“] (5 - 4 z 0) 
1 

(5.14) 

where A is a positive constant. We again neglect friction on the sides 
of the wedge. Then relations (3.10) and (3.17) which determine 1, and 2, 

take on the form 

bn = nA% (PI, 
KJ&- nAn 
ph = Izn Fa (PI, P= _<I 

03 
% 

Fl (P) = 1 &s: p)“+l = 

B(+,n)F(n+l,+, n++,-gj) 
(5.15) 

1 
(1 - p)“+’ 

co 

dE 

Fa(P) = s 1/~(-__(5)P)"+l = 

B(~,n+1)F(n+1,$,n+$,-~) 

1 
(1 - p)"+l 

where F(al, a*, as, z) is a hypergeometric function and B(al, a,) is 

Fuler's beta function; the values of integrals are taken from [lo 1. 
Eliminating I, from Equations (5.15), we obtain an equation for /3 in the 

form 

y = F(p) = F2(@)n k [F,(b)] 
2nf1 -- -- 
zn (5.16) 

Having determined /3 from this equation, we find 1, from the first equa- 

tion (5.15). Since this example is of considerable interest, its more 

detailed analysis will be presented in a separate paper. 

6. Limiting velocity of crack propagation. In the problem of 

wedging considered, as well as the problems of a stamp [die 1 which is 
moving with constant velocity on the surface of a semi-space considered 

in the works of Galin [2,3 I, the dependence of the solution on the velo- 

city Vis determined chiefly by a dependence of the dimensionless velo- 

city of the motion of a wedge or a die m = V/c2 on the constants p and q 
determined by relation (2.10). 
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As the present study indicates, in the range 0 < v < l/2, 0 < m < 1 
the quantity q is finite and positive, while the quantity p vanishes as 
the critical velocity is reached which is determined by equation (Fig. 7) 

(6.1) 

ho = vo/c2, v, is the critical velocity), and becomes negative beyond 
it. It is remarkable that Equation (6.1) coincides with the equation 
which determines the velocity of Rayleigh surface waves in the given 
material (see, for example, 112 1 1. 7%’ 1s fact is of principal signific- 
ance in the problems considered, because it limits the applicability of 
the formulation of the problems studied to velocities smaller than the 
Rayleigh velocity. Let us show this with the example of a moving wedge of 
constant thickness (Section 5) and a moving stamp with a plane base in 
the absence of friction. 

We obtain the following expressions for the stresses u5 and o.,, at the 
point 5 = - al, located at a distance 1,(1 + a) from the front part of 
the wedge (Fig. 41, if we consider the wedging by a wedge of constant 
thickness 2h: 

vm2KaE 

OE, = 2p2h (I- v2) 1/ai+ a) (1 - fi m2) ’ 

As the Rayleigh velocity is approached, these stresses tend to in- 
finity since p + 0, whereby the tensile stress 05 approaches infinity 
faster than the tensile stress u . Inasmuch as no material can withstand 
infinite tensile stresses, this Ldicates that in front of the running 
crack transverse cracks will be formed whose appearance will completely 
change the pattern 
assumed by us will 
as the velocity of 
represent in their 

of motion because the model of stationary motion 
no longer correspond to reality. Phenomena which occur 
motion of the wedge is close to the Rayleigh velocity 
nature a peculiar resonance. We note now that from 

Formula (3.8) it follows that for any wedge 
as p + 0, the constant ca approaches zero. 
From (3.16) it follows that as p + 0 the 
constant 1, approaches zero. Thus the length 
of the free part of the crack approaches 
zero as the Rayleigh velocity is reached, 
and we formulate the important conclusion: 
the velocity of propagation of cracks in a 

u 05 given material may not exceed the velocity 

Fig. 7. of propagation of Rayleigh surface waves in 
this material. 

For velocities of the wedge which exceed the Rayleigh velocity, the 
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formulation of the wedging problem changes essentially: the wedge must 
necessarily be assumed in complete contact with the wedged body; no free 
parts of the surface are formed in this case. It seems to us also that 
a study of wedging problems, motions of dies [stamps 1 and other similar 
problems should be based for near-Fiayleigh velocities on an essentially 
new model of the wedging process of the body. 

In addition to the Rayleigh velocity, there exists another lower 
critical velocity for isotropic bodies. It is natural to assume that in 
an isotropic body the free development of a crack proceeds in the direc- 
tion of maximum cleavage stress. Therefore, in order that in the wedging 
problem the crack be developed in front of the wedge and that it remain 
rectilinear, it is necessary that the extension of the cut (negative part 
of the x-axis) be the line of maximum cleavage stresses, at least in the 
neighborhood of the end of the crack. Let us now draw a circle of some 
radius r which is small as compared to the dimensions of the free part 
of the crack, but which is large as compared to the dimensions of the end 
region, with its center at the end of the crack. Let y be the angle 
measured from the extension of the cut such that for small y the cleav- 
age stress may be represented in the form 

K 
6 - 

W-nJf/;(GN-MH) 
{GN - MH - cqa It_ 0 (r4)} (6.3) 

where 

,ct = FM - LN + + (GN - MH) + $ (GNk12 - MHkz2) - MN (k, - k,) 

E2f(f% y) 
= (1 + Y)2 (I- ZY)2 v I - l-2v 

-m2 
2(1--v) 

--- 
/(m, Y)=(1-~~~)(1+~~m~)-~l-~~1/1-~~~+ 

+$[(1-~$~)2-~1-~21/1-~~m~] + 

+$V? -- a m2 [(I -$mz)2 v’l_ 2ej m2 - (1 - m2)“‘] - 

-j/l- q *m 1-+m a)[l/l-~mma-~~] 

Th * e quantity a is positive for O< m < m* and negative for m’ < m < m0 

where m’(u) is determined by the relation 

f(m’,v)=O (6.4) 

and m0 by the relation (6.1). 

We give the values of the quantity m* for some values of v: 
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v= 0 0.1 0.2 0.3 0.3 0.5 
m’ =0.510 0.560 0.603 0.653 0.707 0.760 

Thus ) for m > m*, the straight line y = 0 becomes a line of minimum 

cleavage stresses, while for m < 

1 
has established in a somewhat different manner the existence of this 

critical velocity, considering the problem of a moving crack of constant 

length in a homogeneous stress field. However, Equation (6.4) determin- 

ing the critical velocity V* was not indicated in her paper. 

In the case when the developing crack in an isotropic body remains 

rectilinear for some reason, the velocity of development of the free 

crack is limited only by the Rayleigh velocity. 

Roberts and Wells 113 1 have studied the maximum velocity of crack 

propagation in a brittle body which is in a homogeneous stress field. 

However, their approach, based on the solution of a static problem of 

the theory of elasticity, may not be accepted as suitable for quantita- 

tive calculations. 

The same pattern obtains also in the problem of a moving die: this 

problem may be studied only for velocities of the die which are smaller 

than the Rayleigh velocity. Indeed, in the case of a die with a plane 

base the expressions for the stresses are of the form 

1 1 MF 
0~ = z CN_DM Im[wWl- CN FLUM Im 1~ (41 } (6.5) 

1 GN 
6,=-- GN_-_YM { 

Irn iwl (‘d - &,,“_“M Irn 1% h)]} (6.6) 

zl=l+iklq, z2 = F: i_ ik,q 

‘Ihe coefficients C, N, U, F, G, H are determined by Formulas (2.3). As 
the Rayleigh velocity is approached, p + 0, while the expressions in 
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parentheses remain finite such that the stresses u and u,, approach in- 
finity. Again peculiar resonance phenomena occur w ich i are related to 
the fracture of the material inside the body and to a radical change of 
the pattern of motion. lhus also in this problem the assumed stationary 
model of motion appears to be suitable only for velocities which are 
smaller than the Rayleigh velocity. We recall that Eshelby [14 1 
established that the velocity of propagation of Rayleigh waves is the 
upper limit of the velocity of motion of linear dislocation in the 
material if the atomic nature of the material is taken into account. 

lhe results obtained in the present paper once more confirm the 
significance of the Rayleigh velocity in problems of dynamics of a solid 

body. 
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